Groups on Linear Spaces
In physical mathematics we frequently speak of group operations on linear spaces. Consider the elements of a group Ga and linear operators T(Ga), so that T(Ga)v⟹v′, where v and v′ are vectors.T(Ga)ei=Tji(Ga)ej(ej,T(Ga)ei)=Tji(Ga)T(Ga)T(Gb)=T(Gc), if GaGb=Gc
The operators T are an example of a representation of the group Ga with respect to operator multiplication.
What is a group?
We restrict attention to finite groups, which are sets with a binary operation that is
\require{enclose}1. closed, and
2. associative
Also,
3. \exists an inverse for every element, and
4. \exists an identity element
Reducibility
This is an important topic in rep theory. Suppose L is a vector space, invariant with respect to the transformations T(G_a). If L=L_1 + L_2, two orthogonal spaces also invariant with respect to T(G_a), then T reduces. Otherwise, T is irreducible. Amazing fact: all finite groups have a finite number of (non-equivalent) irreducible representations. We will show this.Schur's Lemma
Before going further, we need a preliminary result.T^{\alpha}(G_a) A - A T^{\beta}(G_a) = 0 \; \enclose{horizontalstrike}{\lor} \;G_a \implies A = \lambda \delta_{\alpha \beta} I
But we can construct just such an A
A = \sum_b T^{\alpha} (G_a) X T^{\beta}(G_a^{-1})
X is arbitrary, but determines \lambda
\sum_{bmn} T_{im}^{\alpha}(G_b) X_{mn} T_{nj}^{\beta}(G_b^{-1}) = \lambda \delta_{\alpha \beta} \delta_{ij}
Choose X_{mn} = \delta_{mq}\delta_{np}
\begin{equation} \sum_{b} T_{iq}^{\alpha}(G_b)T_{pj}^{\beta}(G_b^{-1}) = \lambda \delta_{\alpha \beta} \delta_{ij} \label{eq:1} \end{equation}
Let \alpha = \beta and i=j
\sum_{b} T_{iq}^{\alpha}(G_b)T_{pi}^{\beta}(G_b^{-1}) = \lambda
Sum both sides over i
\sum_{b} T_{pq}^{\alpha}(E) = \lambda S_{\alpha}
S_{\alpha} is the dimension of the \alpha representation.
\begin{equation} g \delta_{pq} = \lambda S_{\alpha} \label{eq:2} \end{equation}
g is the number of elements in the group.
Using \eqref{eq:2} in \eqref{eq:1}:
\begin{equation} \sum_{b} T_{iq}^{\alpha}(G_b)T_{pj}^{\beta}(G_b^{-1}) = \delta_{pq} \delta_{\alpha \beta} \delta_{ij} \frac{g}{S_{\alpha}} \label{eq:3} \end{equation}
Let T be unitary, i=j, \alpha = \beta, and p = q.
\sum_{b} T_{iq}^{\alpha}(G_b)T_{iq}^{* \alpha}(G_b) = \sum_{b}{|T_{iq}^{\alpha}(G_b)|}^2 = \frac{g}{S_{\alpha}}
Characters
In \eqref{eq:3}, let q=i and p=j and sum over i and j\begin{align*} \sum_{ijb} T_{ii}^{\alpha}(G_b) T_{jj}^{* \beta}(G_b) & = \sum_{ij} \delta_{ij} \frac{g}{S_{\alpha}} \delta_{\alpha \beta} \\ \sum_{b} \chi^{\alpha}(G_b) \chi^{* \beta}(G_b) &= g \delta_{\alpha \beta} \end{align*}
Where the character \chi^{\alpha}(G_a) is the trace of the operator T^{\alpha}(G_a)
If we let C_p count the members of a given class, the elements of which share a character, we can write this as
\begin{align} \sum_p C_p \chi_p^{\alpha} \chi_p^{* \beta} &= g \delta_{\alpha \beta} \label{eq:4} \\ \sum_p C_p |\chi_p|^2 &= g \end{align}
For any representation, \chi_p = \sum_i m_i \chi_p^i since any rep can be resolved to its irreducible components. We can find the m_i, given the characters.
\begin{align*} \sum_p C_p \chi_p^{\alpha} \chi_p &= \sum_i \sum_p C_p \chi_p^{\alpha} m_i \chi_p^i \\ &= \sum_i g \delta_{\alpha i} m_i \\ &= m_\alpha g \end{align*}
For any rep, \sum_p |\chi_p|^2 \gt g with equality only if the rep is irreducible.
\begin{align} \sum_p |\chi_p|^2 &= \sum_p C_p \sum_{\alpha} m_\alpha \chi_p^\alpha \sum_{\beta} m_\beta \chi_p^\beta \\ &= \sum_{\alpha \beta} \sum_p C_p \chi_p^\alpha \chi_p^{* \beta} m_\alpha m_\beta \\ &= \sum_{\alpha \beta} \sum_p g \delta_{\alpha \beta} m_\alpha m_\beta \\ &= \sum_\alpha g |m_\alpha|^2 \end{align}
This equals g only if the m_\alpha are all 0, with one exception, which is 1
The Regular Representation
Define the g-dimensional representation T^\text{Regular} by
G_a G_b = \sum_c T_{cb}^\text{Regular}(G_a) G_c
The \chi^R(G) are all zero except \chi^R(E) which is g. Consider the reduction of the regular representation:
\begin{align} \sum_p C_p \chi_p^{* \alpha} \chi_p^R &= g m_\alpha \\ C_E \chi_E^{* \alpha} \chi_E^R(E) &= g m_\alpha \\ S_\alpha g &= g m_\alpha \end{align}
So m_\alpha = S_\alpha, and g=\sum_\alpha m_\alpha S_\alpha = \sum_\alpha S_\alpha^2
The number of orthogonal vectors, T_{ij}^\alpha, is \sum_\alpha S_\alpha^2, which we now know is g. That is, these vectors span the vector space. We could expand any vector in this space as
v = \sum_{ij\alpha} Z(ij\alpha) T_{ij}^\alpha
Or in component form
v_a = \sum_{ij\alpha} Z(ij\alpha) T_{ij}^\alpha(G_a)
Character Relations
Now, consider a vector v that has the same component along all directions in a class, like so:v_a = \frac {1}{g} \sum_{b=1}^g v_c \,\,\, \text{ where $G_c = G_b^{-1} G_a G_b$}
and decompose v_a and v_c along T like so:
\begin{align} v_c &= \sum_{ij\alpha} Z(ij\alpha) T_{ij}^\alpha(G_c) \\v_a &= \sum_{b} \sum_{ij \alpha} \sum_{kl} \frac{Z(ij\alpha)}{g} T_{ik}^\alpha(G_b^{-1}) T_{kl}^\alpha(G_a) T_{lj}^\alpha(G_b) \end{align}
Using \eqref{eq:3} to sum out b
\begin{align} v_a &= \sum_{ij \alpha} \sum_{kl} \frac {Z(ij\alpha)}{g} \frac{g}{S_\alpha} \delta_{kl} \delta_{ij} T_{kl}^{\alpha}(G_a) \\ &= \sum_{i\alpha} \sum_k \frac{Z(ii\alpha)}{S_\alpha} T_{kk}^{\alpha}(G_a) \\ &= \sum_{i\alpha} \frac{Z(ii\alpha)}{S_\alpha} \chi^{\alpha}(G_a) = \sum_{\alpha} \chi^{\alpha}(G_a) \left[ \sum_i \frac{Z(ii\alpha)} {S_\alpha} \right] = \sum_\alpha z(\alpha) \chi^\alpha(G_a) \end{align}
We see that the \chi^\alpha span this space of classes so we conclude there must be n \alpha's if there are n classes.
\bbox[5px,border:2px solid red] { \text{# of irreps = # of classes} }
Since the character table is square, we can re-write \eqref{eq:4}, which tells us the rows of the table are orthogonal, in the following form
B_{\alpha p} = \sqrt{\frac{C_p}{g}} \chi_p^\alpha
\sum_p B_{\alpha p} B_{\beta p}^{*} = \delta_{\alpha \beta}
So Det(B) = Det(B^{\dagger}) = 1, so B has an inverse, B^{-1} = B^{\dagger}, which implies the columns are also orthogonal:
\sum_{\alpha} B_{\alpha p}^{*} B_{\alpha q} = \delta_{pq}
\sum_{\alpha} \frac{C_p }{g} \chi_p^{\alpha *} \chi_q^{\alpha} = \delta_{pq}
\begin{equation} \sum_\alpha \chi_p^\alpha \chi_q^\alpha = \frac{g}{C_p} \delta_{pq} \end{equation}
Woo!
Projection Operators
G_a e_i^{\alpha} = \sum_j T_{ji}^\alpha(G_a) e_j^{\alpha} \, \text { (defines a representation) }\begin{align} \sum_a T_{mn}^{\beta}(G_a^{-1}) G_a e_i^\alpha &= \sum_{aj} T_{mn}^{\beta}(G_a^{-1}) T_{ji}^\alpha(G_a) e_j^\alpha \\ &= \sum_j \frac{g}{S_\beta} \delta_{mi} \delta_{nj} \delta_{\alpha \beta} e_j^{\alpha} \\ &= \frac{g}{S_\beta} \delta_{mi} \delta_{\alpha \beta} e_n^{\beta} \end{align}
Let m=n
\sum_a T_{nn}^{\beta}(G_a^{-1}) G_a e_i^\alpha = \frac{g}{S_\beta} \delta_{ni} \delta_{\alpha \beta} e_n^{\beta}
Define a projection operator
\left[ \sum_a \frac{S_\beta}{g} T_{nn}^{\beta}(G_a^{-1}) G_a \right] e_i^\alpha= \delta_{ni} \delta_{\alpha \beta} e_n^{\beta}
P_n^\beta e_i^\alpha = \delta_{ni} \delta_{\alpha \beta} e_n^{\beta}