Processing math: 72%

Thursday, November 14, 2013

GVD, Chirp, and Pulse Spreading

The Fourier transform of a gaussian pulse shape is also gaussian.  If f(x)=exp((xa)2), then we can develop the transform as

F(k)=12πf(x)eikxdx=12πe(xa)2eikxdx=12πexp[(xa)2ikx]dx=aπ2πexp(a2k24)=a2πexp[(ak2)2]

Consider now the time-evolution of this pulse, assuming this shape (in x), at t=0 and allowing each k component to evolve according to eiw(k)t.  That is, evolve through linear media with ωω(k)

f(x,t)=a2πexp[(ak2)2]exp(ikxiω(k)t)dk

Let ω(k)=ω0+ω1k+ω2k2+ H.O.T.

f(x,t)=a2πexp(a24k2+ikxiω0tiω1ktiω2k2t)dk=aeiω0t2πexp[(a24+iω2t)k2+i(xω1t)k]dk=aeiω0t2ππ(a24+iω2t)exp((xω1t)24(a24+iω2t))=aeiω0ta2+4iω2texp((xω1t)2(a2+4iω2t))=eiω0t1+4iω2ta2exp((xω1t)2a2(1+4iω2ta2))

We can see the pulse moves with velocity ω1, the group velocity, and spreads with time according to a factor controlled by ω2, the group velocity dispersion.  To see this more clearly, let's look at the spectrum of a gaussian with a complex width parameter.

Since
exp(ax2)exp(bx)dx=πaexp(b24a)

We can write
exp(Γk2)exp(ikx)dk=πΓexp(x24Γ)

Or
exp(Γk2)πΓexp(x24Γ)

If Γ=a+ib then

\begin{align} \exp(- (a+ib) k^2) &= \exp(- a k^2) \bbox[ border:2px solid yellow ] {\exp(-ib k^2)} \\ & \iff   \sqrt \frac{\pi}{(a+ib)} \exp \left( -\frac {x^2}{4 (a+ib) } \right) \\ &= \sqrt \frac{\pi}{(a+ib)} \bbox[ border:2px solid cyan ] {\exp \left( -\frac {a x^2}{4 (a^2+b^2) } \right)} \exp \left( i \frac {b x^2}{4 (a^2+b^2) } \right) \end{align}
and we can see that the imaginary part of \Gamma both controls the \bbox[ border:2px solid yellow ] {\text{chirp}} in the k domain, and influences \bbox[ border:2px solid cyan ] {\text{width}} in the x domain.