F(k)=12π∫f(x)e−ikxdx=12π∫e−(xa)2e−ikxdx=12π∫exp[−(xa)2−ikx]dx=a√π2πexp(−a2k24)=a2√πexp[−(ak2)2]
Consider now the time-evolution of this pulse, assuming this shape (in x), at t=0 and allowing each k component to evolve according to e−iw(k)t. That is, evolve through linear media with ω≡ω(k)
f(x,t)=∫a2√πexp[−(ak2)2]exp(ikx−iω(k)t)dk
Let ω(k)=ω0+ω1k+ω2k2+ H.O.T.
f(x,t)=a2√π∫exp(−a24k2+ikx−iω0t−iω1kt−iω2k2t)dk=ae−iω0t2√π∫exp[−(a24+iω2t)k2+i(x−ω1t)k]dk=ae−iω0t2√π√π(a24+iω2t)exp(−(x−ω1t)24(a24+iω2t))=ae−iω0t√a2+4iω2texp(−(x−ω1t)2(a2+4iω2t))=e−iω0t√1+4iω2ta2exp(−(x−ω1t)2a2(1+4iω2ta2))
Since
∫exp(−ax2)exp(−bx)dx=√πaexp(b24a)
We can write
∫exp(−Γk2)exp(ikx)dk=√πΓexp(−x24Γ)
Or
exp(−Γk2)⟺√πΓexp(−x24Γ)
If Γ=a+ib then
\begin{align} \exp(- (a+ib) k^2) &= \exp(- a k^2) \bbox[ border:2px solid yellow ] {\exp(-ib k^2)} \\ & \iff \sqrt \frac{\pi}{(a+ib)} \exp \left( -\frac {x^2}{4 (a+ib) } \right) \\ &= \sqrt \frac{\pi}{(a+ib)} \bbox[ border:2px solid cyan ] {\exp \left( -\frac {a x^2}{4 (a^2+b^2) } \right)} \exp \left( i \frac {b x^2}{4 (a^2+b^2) } \right) \end{align}
and we can see that the imaginary part of \Gamma both controls the \bbox[ border:2px solid yellow ] {\text{chirp}} in the k domain, and influences \bbox[ border:2px solid cyan ] {\text{width}} in the x domain.