Define
F such that
f(x)=1√2π∫F(k)eikxdk
and therefore
F(k)=1√2π∫f(x)e−ikx
Then we have
∫f(x)g(x)dx=∫F(k)G(−k)dk
Since
G⋆(−k)⟺g∗(x), we have
∫f(x)g⋆(x)dx=∫F(k)G∗(k)dk
Since
g(x)e−iαx⟺G(k+α), a similar manipulation gives
∫f(x)[g(x)e−ikx]dx=∫F(k′)G(−k′+k))dk′=∫F(k′)G(k−k′))dk′